当AI发展借新基建东风进一步加速后,每个垂直门类都开始表现出一边深化技术、一边广拓生态的两大特征。
最近的百度大脑语言与知识技术峰会直接表现了这一点。
一次性推出11项发布,AI技术的大规模应用进程被行业巨头加快,而正如百度CTO王海峰所言,“在百度语言与知识技术的布局和发展中,我们始终在注意把握两个趋势,即技术发展趋势和产业发展趋势,并力争引领趋势。” 作为AI皇冠上的明珠,NLP在一边继续进行技术深化的同时,产业落地也开始齐头并进。
如果从2010年百度成立自然语言处理部算起,NLP从技术和产业上全面布局已经走过整整十个年头。
作为AI领域发展时间最久、积累最丰厚的垂直领域,NLP正在尝试塑造出一个产业智能化从技术到应用的完整范式,对百度而言,这张AI王牌中的王牌也是时候打出手了。
一、密集发布技术成果后,NLP巨头的产业落地呈现三大特征
巨头的密集动作,直接表现出NLP这个AI排头兵在产业落地上的三大特征。
1、技术“称王”后,领头羊正在担起行业责任
过去十年,百度大脑在NLP领域积累了大量的技术成果,例如包括国家科技进步奖在内的20多个奖项,30多项国际竞赛冠军,发表学术论文超过300篇,申请专利2000多项。
长期的数据和技术沉淀让百度NLP在国内处在了领先的位置,成为中国NLP发展的一面旗帜。而这种沉淀即便放到国际视野下,仍然可以支撑百度进入NLP头部梯队,代表中国AI在关键的语言和知识垂直领域占据重要的席位,获得行业话语权。
回过头来看,也只有NLP方面有深度积累的巨头才能完成这样的产业落地矩阵构建。
3、“降落伞”规则,支撑AI技术落地走得更稳
合格率99.9%的降落伞会导致每千名士兵有一人因为产品不合格而失去生命,当军方要求生产厂家负责人自己亲身检测产品后,“难以突破的”合格率马上被提到了100%。
这个二战典故带来的“降落伞”规则在很多当代产业合作中被实践,百度NLP也是如此,很多产品或解决方案都有应用在百度庞大的互联网、科技生态中的“经历”。
例如,在百度移动生态的内容推荐及内容审核中,已经广泛存在NLP的身影,即便到了视听内容时代,百度在视频推荐方面超越行业的内容理解能力,同样有NLP的功劳。
而不止于移动生态,百度多样化业务布局中也存在NLP的印记,例如领先行业的金融信贷风控能力,或者百度最近大力推进的智慧医疗,其中涉及语义和知识也需要NLP加持。
二、破解“既要-又要”难题,语言与知识领域的AI已经完成三大挑战
NLP产业应用往往面临“既要-又要”的表面矛盾,而所谓的产业落地,某种程度上就是破解这些“无法兼得”矛盾的过程。
这从百度NLP的产品或解决方案中可见一斑。
1、既要通用性的便利,又要定制化的深度
一方面,由于通用性,产业开发者可以基于共有的方案快速实现产品或解决方案的部署及上线;另一方面,随着产业智能化走向深度,不同产业客户往往都开始追求属于自己独特的定制化能力。
这种通用性和定制化的矛盾,随着产业对AI追求深化将越来越明显。
可以看到,百度NLP此次的动作,越来越贴合“鱼和熊掌兼得”的现实需要。以语义理解技术与平台文心ERNIE为例,一站式能力即能够实现解决方案的快速部署适配,也能够满足开发者的个性化需求。
可以看出,这种成本的降低伴随着效率的提升,二者是一体两面的关系。而更进一步看,对实际参与开发工作的开发者而言,仅需要配置或编写少量代码便可完成从模型训练到模型评估,1周的工作1天完成,这本身也是一种体验上的优化。
类似的还有UNIT智能对话与定制服务平台,在本次升级后数据标注成本的进一步降低30%以上。重点场景预置的场景化解决方案,能够帮助开发者以更低的成本、更高的效率完成智能对话系统的构建,而这种构建也不需要长篇大论、逻辑复杂的编程,只需要调用对应的模块即可。
在此基础上,智能创作平台进行了再升级,一次性推出囊括智能策划、智能采编和智能审校全链条的3大场景方案,而每个环节,都十分深度而不只是简单的布局。
例如,在智能采编环节,借助融合文本、视觉、语音的跨模态AI技术,一方面提供文章创作多样、易用的工具,另一方面,还整合了视频编辑、图文与视频互相转换等视频生产实用能力,实际应用可以帮助视频生产速度达到原有的6倍。
可以认为,在百度等巨头的积极探索下,过去NLP领域那些不可能、充满矛盾的产业应用需求,最终将变得稀松平常。
三、让AI强者恒强的“自增强循环”,这次AI巨头又有了新的玩法
在AI发展领域有典型的来自实践的“自增强循环”现象,即在深度积累下不断在自身业务、产业领域进行实践,将成果反馈,推动算法、数据等不断进步,自我强化,对行业的领先像滚雪球一样越滚越大。
例如,百度NLP领先行业的UNIT,自发布以来,2.7万多开发者在平台累积知识条目总量2.4亿,支撑了超过10万个智能对话应用,与最终用户总计进行了超过4200亿次交互。
这些实践的强化,反过来让UNIT能力更上一层楼,推出更多更低成本、更高效率、更好开发体验的服务,这种正向循环让UNIT超越竞品越来越多。
在百度的构想中,它试图“团结”来自国内多家高校和企业的数据资源研发者,共同建设这样一个数据项目,在更多的“同行”加入下,获得更丰富的任务类型、更多的开源数据集合。
这样做的好处,是让计划中的每一个参与者都能享受到整个行业的数据和模型积累,从复杂知识构建、语义理解、知识融合、多模态融合等角度推动技术的进步,毕竟,百度NLP积累再多,也少于整个行业,而NLP又是一个极度依赖积累的AI垂直领域。
千言第一期总共涵盖了7大任务,20多个中文开源数据集合,这会是百度另一种“自增强循环”的开启,只不过,它依靠的是整个行业横向而不是自身实践纵向的推进力量,也将惠及整个行业。
总而言之,已经完成“技术扛鼎”的百度NLP,重心已经转移到了产业落地上。作为走在NLP应用于产业智能化最前线的巨头,百度走出了有自身调性的路子,也通过满足产业更复杂深度的方式来获得更广泛的认可,以及相对竞争对手的优势。与此同时,从竞争到竞合的行业态势,也通过百度的引导开始发生在NLP领域。
*此内容为【科技向令说】原创,未经授权,任何人不得以任何方式使用,包括转载、摘编、复制或建立镜像。
文 | 曾响铃
来源 | 科技向令说
【完】
曾响铃
1钛媒体、品途、人人都是产品经理等多家创投、科技网站年度十大作者;
2虎啸奖评委;
3作家:【移动互联网+ 新常态下的商业机会】等畅销书作者;
4《中国经营报》《商界》《商界评论》《销售与市场》等近十家报刊、杂志特约评论员;
5钛媒体、36kr、虎嗅、界面、澎湃新闻等近80家专栏作者;
6“脑艺人”(脑力手艺人)概念提出者,现演变为“自媒体”,成为一个行业;
7腾讯全媒派荣誉导师、多家科技智能公司传播顾问。
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至253000106@qq.com举报,一经查实,本站将立刻删除。
发布者:SEO优化专员,转转请注明出处:https://www.chuangxiangniao.com/p/973794.html