2019年7月22-23日,由工业和信息化部指导,中国信息通信研究院主办的第三届“中国工业大数据创新竞赛”(以下简称为“竞赛”)决赛现场答辩及颁奖仪式在北京辽宁大厦落下帷幕。作为首个由政府主管部门指导的工业大数据领域的权威性全国赛事,竞赛已累计吸引产学研各界超过6000人参赛,开发出许多聚焦行业细分领域的算法模型,解决诸多传统工业领域中的“老大难”问题。此次,InfoQ 专访第三届工业大数据竞赛冠军团队胡翔,以及来自首尔大学的国际团队 tea ,深入解读在工业大数据与智能制造领域中这群开拓者的故事。
我并不是“一个人在战斗”
作为决赛中唯一的个人参赛者,当提起“以一敌百”取得冠军的荣耀时刻时,胡翔调侃道,“实际上我并不是‘一个人在战斗’。”
面对着竞赛数十只支多人队伍同场竞技,胡翔表示单人参赛既有优势又有劣势。其中,优势在于个人对比赛工作的安排更加自由灵活,同时也会更加专注,对于每一个想法都能亲自尝试与验证,这使得自己对问题的理解能更加的透彻、深入。
但是,“人多力量大”这句老话也确有道理,单人参赛相比于多人团队,需要去做更多的分析工作,也更加有压力。毕竟个人的理解能力比较单一,缺乏不同思路的碰撞,思路会更容易陷入壁垒。“但很幸运的是在因联科技,我身边的同事给了我很多帮助,他们对这个问题的理解和思路给了我很多启发,实际上我并不是‘一个人在战斗’,在这里向他们表示感谢。”
2018 年,胡翔硕士毕业于西安交通大学机械工程学院,入职于西安因联信息科技,正式成为了一名工业算法工程师。持续关注工业大数据相关信息的他,在看到第三届工业大数据竞赛报名的信息后,毅然决定“单枪匹马大练兵”。
对于“练兵”的含义,胡翔笑着说:“练兵有两层含义,一是为了锻炼自己解决工业预测性维护问题的能力。二是在工业预测性维护领域工作一年多后,以比赛这种形式去解决实际问题,对于自我业务能力的提升,是一个非常好的机会。毕竟比赛的水平是非常高的,还能认识非常多优秀的同行。”
图 1 无故障机组各时段典型轴心轨迹
第三届工业大数据创新竞赛韩国参赛团队 tea 小组
据了解,这也是 tea 小组第一次来中国参加此类比赛。对于他们来说,本次竞赛的最大挑战在于,给定的数据集是在转子部件脱落故障之前采集的。因此,在分析数据的过程中,很难检测到故障发生的特征,并确定未故障到接近故障的顺序。而为了更清晰的判断,tea 小组在解题初期也想过使用机器学习或其他模型(实际上一些成员的主要研究方向是 PHM 领域的深度学习),但由于标签信息可能会由于上诉问题变得不清晰,tea 小组设定了自己的标准,以确定是否故障及故障的顺序。
同样,为了实现在实际工业场景中的应用,tea 小组表示,他们还需对给定目标系统(的特定故障)设置更合适的故障标准或阈值,算法模型也要从目标系统中同时获取正常和故障的数据,并设置明确标准以区分是正常还是故障,实现模型的进一步优化与改进。
近年来,在工业 4.0 的发展趋势下,韩国和中国一样,随着高附加值技术重要性的增强,过程自动化以及相关的自动故障诊断和预测系统也将变得十分重要。
写在最后
智能制造和工业互联网是密不可分的关系。正如胡翔所说,预测性维护是工业互联网应用的“皇冠上的明珠”。当然远远不止如此,大数据和智能制造给传统工业带来了巨大冲击,强大的工业数据分析服务将成为制造企业数字化战略的重要组成部分,工业互联网将显现出更大的战略价值。可以预见,工业大数据应用将带来工业企业创新和变革的新时代。
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至253000106@qq.com举报,一经查实,本站将立刻删除。
发布者:SEO优化专员,转转请注明出处:https://www.chuangxiangniao.com/p/968348.html