零售企业增长受限,智能BI如何成为破局之道

近两年,伴随流量红利消失和供给过剩,从粗放扩张走向精细化运营,已成为诸多消费零售企业的共识。其中,数字化、智能化作为业务的重要引擎,也在被越来越多地提及。

但在落地时,大多数消费零售企业还是一筹莫展,他们普遍存在以下疑虑:

如何判定数据对企业的具体价值,什么时候落地系统最合适?在不同阶段怎么做升级迭代?未来通过数据化、智能化,可以做成什么样的公司?

为此,浪潮新消费专访了观远数据创始人苏春园 ,他曾任微策略中国区产品研发总裁,在商业智能领域有多年专业积累。

2016 年创立观远数据,深耕零售和消费领域,围绕数据分析决策,服务超过一百家头部消费零售公司,包括联合利华、沃尔玛等五百强企业。 而在最近,「观远数据」也获得了襄禾资本、红杉资本等机构的上亿元B轮融资。

过去大家关注的都是流量问题:怎么做电商的投放、流量增长,但零售最终比的就是精耕细作,这才是未来企业的核心竞争力。 ”在苏春园看来,未来好的零售企业,一定也是科技企业。

“你不能指望它马上就能产出多么大的结果。但只要你愿意持续地投入,每天都在基于新的数据不断迭代,在你更新365天之后,一定能甩别人十条街。”

1 、数据发生重要价值,需要时间的积累

最近几年,我们看到一个大趋势,就是现在已经不是流量的时代了,而是效率的时代。 如何持续地创新,更敏捷地反应,更精准地选品……这些问题都建立在效率基础之上。

对企业来说,这是一个从2C到2B的过程,过去大家关注的都是流量增长问题,比如怎么做电商投放、流量运营等等,但现在比的是精耕细作,比的是效率。

无论是大数据,还是人工智能,其实解决的都是效率问题,这才是未来企业的核心竞争力。

相比于国内,美国企业在这方面发展得很好。最大的区别在于,他们的基础非常扎实。 像星巴克这些五百强企业,它们的数据化工作坚持了很多年,到今天已经形成非常规范的数据口径和很好的数据质量。这其实非常难得,需要很长时间积累。

国内零售企业很典型的一类问题是什么呢?大家都说要拥抱大数据,拥抱人工智能,但很少能坚持下来。

因为大数据未必能一下子产生多么宏大的价值,它需要持续积累。有一些客户,上来就想做预测和指导,但其实没有历史上的促销、门店、货架等数据,很难一下子做出多么大的优化。

所以数据化这个东西,越早启动越好。把该沉淀的数据沉淀下来,该规范的管理规范起来,包括数据的质量,也要一步一步优化。就像盖楼一样,你不可能不要第一层第二层,直接就盖到第五层。

而且技术没什么捷径,美国的整个信息化,也是过去30年循序渐进发展起来的。国内是最近10年才开始,还有很多不规范的地方,比如会员到底是不是本人消费的,二维码扫得合不合规等等。因为数据是有口径的,不是采集上来就行,还涉及到各个环节数据的规范统一。

2 、中国零售的创新、迭代,将催生DT时代SAP的机会

虽然国内的基础比较弱,但基本也以三到五倍的速度在赶超,尤其是在新技术的拥抱和处理上。

我发现我们的一些五百强客户,像沃尔玛、百威、联合利华等等,他们在全球范围内,只有跟中国才有这么前沿的合作,包括他们很多全球的高管都来参观。

中国在全球最能拿得出手的,就是在消费零售领域的各种创新玩法。 各种线上线下的融合、体验的迭代,还有各式各样的线下门店,像社区生鲜,在美国根本就没有这种概念。

这跟中国的商业环境有关,移动互联网加上新生代的消费主力军,创造了一个复杂又非常有活力的市场。在C端的倒逼下,你必须源源不断地创新,在国内如果你不按照最高的要求去做,肯定活不下去。

在这种市场环境的教育下,创新已经成为主流的群体,尤其是消费零售行业,这几年讲的新零售、社交电商、小程序,如果你没有做过这些创新,企业可能都不在了。

这样的压力,推着国内的零售和品牌力量变得越来越强,迭代越来越快。它们需要最新的技术,技术也永远是跟着商业去服务,这对于我们来说是个巨大的机会。

回到一个例子,就在二三十年前,制造业蓬勃发展的时候,SAP诞生在哪?德国。全球最牛逼的制造大国。SAP 把德国最先进的的产品和理念提炼出来,输出到全球,再牛的企业也得用,而中国现在也有类似的机会。

像SAP、IBM做的都是千亿美金的市场,但为什么中国企业服务领域还没有出现同等实力的公司呢?因为中国本质上已经不是IT的时代了,而是DT时代(Data Technology),企业需要的是DT时代的SAP、IBM。

1 、通过数据,寻找100倍迭代改进的机会

如果说IT是帮企业上数据,那DT本质上就是帮企业去用数据,挖掘数据价值。在这个大趋势下,观远数据的核心定位就是做一个数据分析平台,通过分析业务数据,让企业更好地发现问题,给出决策建议。

它是一个决策大脑的问题,是企业未来的核心竞争力所在,也是我们所有商业合作的大门。

因为企业每天都要做几百上千个决策,补货是不是要调整,现在表现是不是异常等等,都不好判断。原来怎么解决的呢?可能是一周开一次会,去分析哪些商品卖得好,货架怎么去调整,怎么做促销。但很多时候你会发现人流量没问题,货架也OK,但销量为什么不好,你找不到原因。

如果我们能通过规则、算法,让这件事情自动化,每半个小时就让算法过一次,每天按8个小时算,一周就多了一百多次发现问题的机会。

零售企业增长受限,智能BI如何成为破局之道

当然,我也接触过一些想自己做数据分析系统的企业,最后都会发现跟想象的不一样,一是慢,二是因为自己做,就意味着缺乏行业视角的指导。

还有一点,零售企业要招高水平的技术团队,最后其实留不住。因为基因不一样,真正想做技术的人,最希望的都是源源不断地接触新技术,一个便利店你说我要天天尝试新技术也不可能。

所以我的建议是很明确的,最后一定是专业分工,要跟外部合作。 当然,同时你也可以有自己的技术团队,他未必要直接下手,但因为熟悉业务,在出问题的时候,大概能知道是什么问题,就够了。

1 、看三年做三个月,针对零售场景的五步法(5A)路径

对于零售企业的数字化,我们提出一个方法论叫「看三年做三个月」。什么意思呢?我们根据很多领先企业的做法,帮他去推演未来三年,构建数据化能够在哪些场景,以什么样的形态产生多大的价值。然后再根据你数据的基础,去规划眼下三个月应该怎么去构建。

具体就是围绕一个企业的生命周期来展开,我们称之为从BI到AI的「5A五步法路径」:

零售企业增长受限,智能BI如何成为破局之道

比如一线门店的订单,你怎么实时监测,快速处理?你怎么去分析海量数据形成的千万种组合,对销售产生的影响?

这就是我们做分析决策,和很多其他做数据分析公司最本质的区别。 我们碰到很多专门做门店数据采集,专门做供应链优化,以及专门做用户行为的等等,但我们的定位是数据分析平台,解决的是决策问题。

任何一个重要的决策,都要融合企业的各个环节来看,不管门店数据,还是供应链,都只是其中一个环节。如果你只有门店数据,比如你知道张三来了,但如果没有其他数据,没有分析,你也不能怎么样?

可是针对历史数据,你知道他不同的时间点喜欢干什么,再结合库存、货架的情况,以及是不是处于促销的状态等等,就能做出分析预测,而不是推荐你本来就缺的产品。

当然,不管是从什么角度做数据分析,大家都是有价值,并且是互补的。比如你在门店装了一个「眼睛」,可以实时监测动态,但同时你要跟其他数据结合分析,才能知道,货架到底要怎么摆放,动态地监控怎么转化成和销量的关系?

他们相当于是支持我们的一个个五官,我们更像是最终汇聚数据做决策的大脑,这是我们的核心能力。

未来我们也会聚焦这一块,把各种分析决策做深入,怎么把预测做得更精准,而不是胡乱延伸。 因为每个企业都要面临会员的流失,商品的补货,门店的动销等等问题,这些场景都需要预测,所以做好预测还是非常有价值的。

3 、未来好的零售企业,一定也是科技企业

从2017年服务第一个用户到现在两年多,我们每年大概都有5倍以上的增长,到现在已经服务一百多家消费零售的新经济企业。

未来三年,我们希望能服务更多的创新公司,但这也没什么捷径,只能一家一家地去服务好,而不是快速扩张。反而更需要慢,因为我们主要服务中大型的企业,如果能把头部服务好,无论是对需求理解,还是产品提炼,都能产生更多的效益。

当然,我们也不着急,因为未来每一个牛逼的零售企业,一定也是科技的企业,否则一定跑不出来。现在对于领先的企业来说,数据分析可能是一个差异化的竞争手段,但未来肯定会成为企业的标配,是你必须要具备的能力。

所以我经常说要有信仰,你不能指望它马上就能产出多么大的结果,觉得自己马上就可以取代谁。但它有一个复利效应,如果你持续地投入,每天都在基于新的数据不断迭代,更新365天之后,一定甩别人十条街。

现在很多零售企业,会花很多时间做前端做增长,比如网红店,通过各种营销活动、创意玩法,很受关注,但大部分其实缺一个底层的东西,去支撑它持续地做下去。

当然,对于前端的创意,我们肯定要尊重,特别是要利用每个企业家独有的审美,形成他的判断,这个没毛病。但与此同时,你一定也有科技的一面。

科技本质上是解放创业者的脑力,把每天大量的分析和决策通过算法来实现,把你在前端创意的优势放大。 因为真正有智慧做决策的人一定不到百分之一,如果能通过技术去完成这一步,其实大大地减轻了创业者的负担。

所以同样的企业,通过把算法算力的作用发挥出来,每天去迭代,就能比过去多发现十倍百倍的增长机会。 这就是智能时代跟工业时代、IT时代最大的区别。

(文章来源:浪潮新消费)

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至253000106@qq.com举报,一经查实,本站将立刻删除。

发布者:SEO优化专员,转转请注明出处:https://www.chuangxiangniao.com/p/968086.html

(0)
上一篇 2025年1月5日 13:43:46
下一篇 2025年1月5日 13:45:42

AD推荐 黄金广告位招租... 更多推荐

相关推荐

发表回复

登录后才能评论

联系我们

156-6553-5169

在线咨询: QQ交谈

邮件:253000106@qq.com

工作时间:周一至周五,9:30-18:30,节假日休息

联系微信