过去几个月时间里,“把大模型塞进终端”已然成了消费电子产业上下游心照不宣的共识。
高通、AMD、英特尔等上游的芯片厂商,争相喊出了混合AI、终端AI、AI计算等概念,努力向外界讲述终端AI化的想象空间;华为、小米、vivo等手机厂商,纷纷将“大模型”搬到智能手机上,示范了智能助手、AI生图等应用场景;联想代表的PC厂商,也顺势讲出了AI PC的新故事……
相较于几年前围绕NPU的“小打小闹”,生成式AI无疑让整个消费电子产业看到了曙光:在全民都在讨论大模型的环境下,AI和终端的融合被视为新的创新锚点,将带动产业链共振。
甚至有人断言,这将是消费电子的下一个“春天”。
无可否认,消费电子产业已经行至十字路口,而拥抱生成式AI已经是唯一的选择。但“大模型”对于消费电子的影响到底有多大,能否改变长期低迷的市场现状?目前来看还有不少待解的问题。
01 消费电子渴望“春天”
AMD和IDC联合发布的《终端AI化:AI笔记本电脑引发场景变革》中,不经意间写出了笔记本电脑市场的症结所在:“用户可以使用同一台设备更长时间,而不需要进行升级或更换,市场的增长随之放缓。”
这样的结论,不仅仅适用于笔记本电脑,整个消费电子产业都陷入了低迷期。
首当其冲的就是PC市场。
根据IDC等市场调研机构的统计,PC市场的疲软已经持续了十几年。2011年全球PC出货量为3.524亿台左右,同比增长1.6%,此后便进入了长达七八年时间的低迷期,直到2020年前后衍生出的远程办公需求,才短暂刺激了PC销量的增长。刚刚结束的2023年第三季度,全球PC出货量约为6820万台,同比下降7.6%,亟需新的因素刺激消费。
同样的一幕也发生在智能手机市场。
也许在相当长一段时间内,大模型的“入口论”只是一种假设。但对AI化转型的终端而言,势必要想清楚自己的站位:和大模型厂商对抗、合作,疑惑是沦为被大模型吞噬的对象?
一种比较流行的思路是打造端侧大模型。
目前主流的大模型主要部署在云端,需要经过一个终端接收信号、云端运算、信息传输、终端发送结果的过程,由此产生了两个已知问题:一是数据出端会影响传输速度,二是潜在的数据和隐私安全。
被引用最多的例子就是三星的数据泄露事件,有员工在使用 ChatGPT 时将数据上传到云端,导致机密数据泄露。如果大模型的数据、推理、训练、运行等全部部署在终端,不仅解决了网络传输导致了延时,且无需将数据上传到云端,规避了隐私外泄的风险。
但当前在端侧普遍使用的是10亿、20亿参数规模的“小模型”,或许在高通、AMD等芯片厂商的努力下,端侧可以运行百亿以上参数的大模型,仍面临用户隐私、算力和功耗的平衡。大多数消费者的需求预期中,体验永远排在第一位,然后才是隐私、安全等问题。
另一种流行思路是端云结合的部署方式。
按照高通在《混合AI是AI的未来》中的说法:在以终端为中心的混合AI架构中,终端将充当锚点,云端仅用于分流处理终端无法充分执行的任务,在终端通过运行不太复杂的推理完成大部分处理工作。
荣耀CEO赵明、联想CEO杨元庆、vivo副总裁周围等都曾表达过对端云结合方式的青睐,不排除在自研大模型外,和外部主流大模型合作的可能,但目前还没有对应的产品或应用。
借用元智能联合创始人罗璇的猜想:“未来可能出现的情形是,手机上运行一个140亿参数的大模型作为OS(操作系统)的’发动机’,而云端则运行一个比GPT-4更大的模型,作为整个下一代互联网的底座。这两者将相互配合,如同当前的本地软件与互联网。”
不管哪一种思路会占据主流,都揭示了这样一个事实:或许终端厂商笃信AI化的趋势,但大模型和终端应该怎么融合,现阶段都还没想好或者说明确的路径。不过,对于高通、英特尔、AMD等芯片厂商来说,只要终端AI化的热度不降,未来两到三年的芯片销量就有了保障。
04 写在最后
曾经有媒体问任正非,怎样才能“抢占”高新技术的一席之地?任正非回答:首先不要有“抢占”这个概念,一抢,就泡沫化。
回到终端AI化的课题上,急于在营销层面抢占“AI终端”的概念,极端化地夸张所谓的AI性能,可能并不是一个好的选项。怎么将生成式AI部署到终端,融入用户的日常使用,带来新的生产力和增量价值,才是AI能否驱动消费电子销量增长的关键所在。
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至253000106@qq.com举报,一经查实,本站将立刻删除。
发布者:SEO优化专员,转转请注明出处:https://www.chuangxiangniao.com/p/919831.html