VLOOKUP: =VLOOKUP(lookup_value, table_array, col_index_num, [range_lookup])INDEX/MATCH: =INDEX(range, MATCH(lookup_value, lookup_array, [match_type])PivotTable: =SUMIFS(sum_range, criteria_range, criteria)Conditional Formatting: =A1>average(A:A)Chart creation: =SERIES(name, categories, values)Data Analytics/Science (Python):Dataframe creation: df = pd.DataFrame({'column1': [1, 2, 3], 'column2': [4, 5, 6]})Data merging: pd.merge(df1, df2, on='common_column')GroupBy: df.groupby('column').sum()Data visualization: plt.plot(df['column'])Machine Learning: from sklearn.linear_model import LinearRegression; model = LinearRegression()SQL:Data insertion: INSERT INTO table (column1, column2) VALUES ('value1', 'value2');Data update: UPDATE table SET column = 'new_value' WHERE condition;Data deletion: DELETE FROM table WHERE condition;Table creation: CREATE TABLE table (column1 data_type, column2 data_type);Index creation: CREATE INDEX index_name ON table (column);R:Dataframe creation: df <- data.frame(column1 = c(1, 2, 3), column2 = c(4, 5, 6))Data merging: merge(df1, df2, by = 'common_column')GroupBy: aggregate(df$column, by = list(df$group), FUN = sum)Data visualization: ggplot(df, aes(x = column)) + geom_bar()Machine Learning: library(caret); model <- train(column ~ ., data = df)Regular Expressions (regex):Match email: [a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+.[a-zA-Z]{2,}Match phone number: d{3}[-.]?d{3}[-.]?d{4}Match date (YYYY-MM-DD): d{4}[-.]d{2}[-.]d{2}
登录后复制
以上就是Microsoft Excel 新短代码的详细内容,更多请关注【创想鸟】其它相关文章!
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至253000106@qq.com举报,一经查实,本站将立刻删除。
发布者:PHP中文网,转转请注明出处:https://www.chuangxiangniao.com/p/2666364.html