Python聚类算法之基本K均值实例详解

本文实例讲述了python聚类算法之基本k均值运算技巧。分享给大家供大家参考,具体如下:

基本K均值 :选择 K 个初始质心,其中 K 是用户指定的参数,即所期望的簇的个数。每次循环中,每个点被指派到最近的质心,指派到同一个质心的点集构成一个。然后,根据指派到簇的点,更新每个簇的质心。重复指派和更新操作,直到质心不发生明显的变化。

# scoding=utf-8import pylab as plpoints = [[int(eachpoint.split("#")[0]), int(eachpoint.split("#")[1])] for eachpoint in open("points","r")]# 指定三个初始质心currentCenter1 = [20,190]; currentCenter2 = [120,90]; currentCenter3 = [170,140]pl.plot([currentCenter1[0]], [currentCenter1[1]],'ok')pl.plot([currentCenter2[0]], [currentCenter2[1]],'ok')pl.plot([currentCenter3[0]], [currentCenter3[1]],'ok')# 记录每次迭代后每个簇的质心的更新轨迹center1 = [currentCenter1]; center2 = [currentCenter2]; center3 = [currentCenter3]# 三个簇group1 = []; group2 = []; group3 = []for runtime in range(50):  group1 = []; group2 = []; group3 = []  for eachpoint in points:    # 计算每个点到三个质心的距离    distance1 = pow(abs(eachpoint[0]-currentCenter1[0]),2) + pow(abs(eachpoint[1]-currentCenter1[1]),2)    distance2 = pow(abs(eachpoint[0]-currentCenter2[0]),2) + pow(abs(eachpoint[1]-currentCenter2[1]),2)    distance3 = pow(abs(eachpoint[0]-currentCenter3[0]),2) + pow(abs(eachpoint[1]-currentCenter3[1]),2)    # 将该点指派到离它最近的质心所在的簇    mindis = min(distance1,distance2,distance3)    if(mindis == distance1):      group1.append(eachpoint)    elif(mindis == distance2):      group2.append(eachpoint)    else:      group3.append(eachpoint)  # 指派完所有的点后,更新每个簇的质心  currentCenter1 = [sum([eachpoint[0] for eachpoint in group1])/len(group1),sum([eachpoint[1] for eachpoint in group1])/len(group1)]  currentCenter2 = [sum([eachpoint[0] for eachpoint in group2])/len(group2),sum([eachpoint[1] for eachpoint in group2])/len(group2)]  currentCenter3 = [sum([eachpoint[0] for eachpoint in group3])/len(group3),sum([eachpoint[1] for eachpoint in group3])/len(group3)]  # 记录该次对质心的更新  center1.append(currentCenter1)  center2.append(currentCenter2)  center3.append(currentCenter3)# 打印所有的点,用颜色标识该点所属的簇pl.plot([eachpoint[0] for eachpoint in group1], [eachpoint[1] for eachpoint in group1], 'or')pl.plot([eachpoint[0] for eachpoint in group2], [eachpoint[1] for eachpoint in group2], 'oy')pl.plot([eachpoint[0] for eachpoint in group3], [eachpoint[1] for eachpoint in group3], 'og')# 打印每个簇的质心的更新轨迹for center in [center1,center2,center3]:  pl.plot([eachcenter[0] for eachcenter in center], [eachcenter[1] for eachcenter in center],'k')pl.show()

登录后复制

运行效果截图如下:

Python聚类算法之基本K均值实例详解

希望本文所述对大家Python程序设计有所帮助。

立即学习“Python免费学习笔记(深入)”;

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至253000106@qq.com举报,一经查实,本站将立刻删除。

发布者:PHP中文网,转转请注明出处:https://www.chuangxiangniao.com/p/2534925.html

(0)
上一篇 2025年3月5日 22:10:59
下一篇 2025年3月5日 22:11:08

AD推荐 黄金广告位招租... 更多推荐

相关推荐

发表回复

登录后才能评论