35个Python编程小技巧

这篇博客其实就是这个集合整理后一部分的公开亮相。如果你已经是个python大牛,那么基本上你应该知道这里面的大多数用法了,但我想你应该也能发现一些你不知道的新技巧。而如果你之前是一个c,c++,java的程序员,同时在学习python,或者干脆就是一个刚刚学习编程的新手,那么你应该会看到很多特别有用能让你感到惊奇的实用技巧,就像我当初一样。

每一个技巧和语言用法都会在一个个实例中展示给大家,也不需要有其他的说明。我已经尽力把每个例子弄的通俗易懂,但是因为读者对python的熟悉程度不同,仍然可能难免有一些晦涩的地方。所以如果这些例子本身无法让你读懂,至少这个例子的标题在你后面去google搜索的时候会帮到你。

整个集合大概是按照难易程度排序,简单常见的在前面,比较少见的在最后。

1.1 拆箱

代码如下:

>>> a, b, c = 1, 2, 3
>>> a, b, c
(1, 2, 3)
>>> a, b, c = [1, 2, 3]
>>> a, b, c
(1, 2, 3)
>>> a, b, c = (2 * i + 1 for i in range(3))
>>> a, b, c
(1, 3, 5)
>>> a, (b, c), d = [1, (2, 3), 4]
>>> a
1
>>> b
2
>>> c
3
>>> d
4

1.2 拆箱变量交换

代码如下:

>>> a, b = 1, 2
>>> a, b = b, a
>>> a, b
(2, 1)

1.3 扩展拆箱(只兼容python3)

代码如下:

>>> a, *b, c = [1, 2, 3, 4, 5]
>>> a
1
>>> b
[2, 3, 4]
>>> c
5

1.4 负数索引

代码如下:

>>> a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> a[-1]
10
>>> a[-3]
8

1.5 切割列表

代码如下:

>>> a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> a[2:8]
[2, 3, 4, 5, 6, 7]

1.6 负数索引切割列表

代码如下:

>>> a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> a[-4:-2]
[7, 8]

1.7指定步长切割列表

代码如下:

>>> a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> a[::2]
[0, 2, 4, 6, 8, 10]
>>> a[::3]
[0, 3, 6, 9]
>>> a[2:8:2]
[2, 4, 6]

1.8 负数步长切割列表

代码如下:

>>> a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> a[::-1]
[10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0]
>>> a[::-2]
[10, 8, 6, 4, 2, 0]

1.9 列表切割赋值

代码如下:

>>> a = [1, 2, 3, 4, 5]
>>> a[2:3] = [0, 0]
>>> a
[1, 2, 0, 0, 4, 5]
>>> a[1:1] = [8, 9]
>>> a
[1, 8, 9, 2, 0, 0, 4, 5]
>>> a[1:-1] = []
>>> a
[1, 5]

1.10 命名列表切割方式

代码如下:

>>> a = [0, 1, 2, 3, 4, 5]
>>> LASTTHREE = slice(-3, None)
>>> LASTTHREE
slice(-3, None, None)
>>> a[LASTTHREE]
[3, 4, 5]

1.11 列表以及迭代器的压缩和解压缩

代码如下:

>>> a = [1, 2, 3]
>>> b = [‘a’, ‘b’, ‘c’]
>>> z = zip(a, b)
>>> z
[(1, ‘a’), (2, ‘b’), (3, ‘c’)]
>>> zip(*z)
[(1, 2, 3), (‘a’, ‘b’, ‘c’)]

1.12 列表相邻元素压缩器

代码如下:

>>> a = [1, 2, 3, 4, 5, 6]
>>> zip(*([iter(a)] * 2))
[(1, 2), (3, 4), (5, 6)]

>>> group_adjacent = lambda a, k: zip(*([iter(a)] * k))
>>> group_adjacent(a, 3)
[(1, 2, 3), (4, 5, 6)]
>>> group_adjacent(a, 2)
[(1, 2), (3, 4), (5, 6)]
>>> group_adjacent(a, 1)
[(1,), (2,), (3,), (4,), (5,), (6,)]

>>> zip(a[::2], a[1::2])
[(1, 2), (3, 4), (5, 6)]

>>> zip(a[::3], a[1::3], a[2::3])
[(1, 2, 3), (4, 5, 6)]

>>> group_adjacent = lambda a, k: zip(*(a[i::k] for i in range(k)))
>>> group_adjacent(a, 3)
[(1, 2, 3), (4, 5, 6)]
>>> group_adjacent(a, 2)
[(1, 2), (3, 4), (5, 6)]
>>> group_adjacent(a, 1)
[(1,), (2,), (3,), (4,), (5,), (6,)]

1.13 在列表中用压缩器和迭代器滑动取值窗口

代码如下:

>>> def n_grams(a, n):
…     z = [iter(a[i:]) for i in range(n)]
…     return zip(*z)

>>> a = [1, 2, 3, 4, 5, 6]
>>> n_grams(a, 3)
[(1, 2, 3), (2, 3, 4), (3, 4, 5), (4, 5, 6)]
>>> n_grams(a, 2)
[(1, 2), (2, 3), (3, 4), (4, 5), (5, 6)]
>>> n_grams(a, 4)
[(1, 2, 3, 4), (2, 3, 4, 5), (3, 4, 5, 6)]

1.14 用压缩器反转字典

代码如下:

>>> m = {‘a’: 1, ‘b’: 2, ‘c’: 3, ‘d’: 4}
>>> m.items()
[(‘a’, 1), (‘c’, 3), (‘b’, 2), (‘d’, 4)]
>>> zip(m.values(), m.keys())
[(1, ‘a’), (3, ‘c’), (2, ‘b’), (4, ‘d’)]
>>> mi = dict(zip(m.values(), m.keys()))
>>> mi
{1: ‘a’, 2: ‘b’, 3: ‘c’, 4: ‘d’}

1.15 列表展开

代码如下:

>>> a = [[1, 2], [3, 4], [5, 6]]
>>> list(itertools.chain.from_iterable(a))
[1, 2, 3, 4, 5, 6]

>>> sum(a, [])
[1, 2, 3, 4, 5, 6]

>>> [x for l in a for x in l]
[1, 2, 3, 4, 5, 6]

>>> a = [[[1, 2], [3, 4]], [[5, 6], [7, 8]]]
>>> [x for l1 in a for l2 in l1 for x in l2]
[1, 2, 3, 4, 5, 6, 7, 8]

>>> a = [1, 2, [3, 4], [[5, 6], [7, 8]]]
>>> flatten = lambda x: [y for l in x for y in flatten(l)] if type(x) is list else [x]
>>> flatten(a)
[1, 2, 3, 4, 5, 6, 7, 8]

1.16 生成器表达式

代码如下:

>>> g = (x ** 2 for x in xrange(10))
>>> next(g)
0
>>> next(g)
1
>>> next(g)
4
>>> next(g)
9
>>> sum(x ** 3 for x in xrange(10))
2025
>>> sum(x ** 3 for x in xrange(10) if x % 3 == 1)
408

1.17 字典推导

代码如下:

>>> m = {x: x ** 2 for x in range(5)}
>>> m
{0: 0, 1: 1, 2: 4, 3: 9, 4: 16}

>>> m = {x: ‘A’ + str(x) for x in range(10)}
>>> m
{0: ‘A0’, 1: ‘A1’, 2: ‘A2’, 3: ‘A3’, 4: ‘A4’, 5: ‘A5’, 6: ‘A6’, 7: ‘A7’, 8: ‘A8’, 9: ‘A9’}

1.18 用字典推导反转字典

代码如下:

>>> m = {‘a’: 1, ‘b’: 2, ‘c’: 3, ‘d’: 4}
>>> m
{‘d’: 4, ‘a’: 1, ‘b’: 2, ‘c’: 3}
>>> {v: k for k, v in m.items()}
{1: ‘a’, 2: ‘b’, 3: ‘c’, 4: ‘d’}

1.19 命名元组

代码如下:

>>> Point = collections.namedtuple(‘Point’, [‘x’, ‘y’])
>>> p = Point(x=1.0, y=2.0)
>>> p
Point(x=1.0, y=2.0)
>>> p.x
1.0
>>> p.y

2.0
1.20 继承命名元组

代码如下:

>>> class Point(collections.namedtuple(‘PointBase’, [‘x’, ‘y’])):
…     __slots__ = ()
…     def __add__(self, other):
…             return Point(x=self.x + other.x, y=self.y + other.y)

>>> p = Point(x=1.0, y=2.0)
>>> q = Point(x=2.0, y=3.0)
>>> p + q
Point(x=3.0, y=5.0)

1.21 操作集合

代码如下:

>>> A = {1, 2, 3, 3}
>>> A
set([1, 2, 3])
>>> B = {3, 4, 5, 6, 7}
>>> B
set([3, 4, 5, 6, 7])
>>> A | B
set([1, 2, 3, 4, 5, 6, 7])
>>> A & B
set([3])
>>> A – B
set([1, 2])
>>> B – A
set([4, 5, 6, 7])
>>> A ^ B
set([1, 2, 4, 5, 6, 7])
>>> (A ^ B) == ((A – B) | (B – A))
True

1.22 操作多重集合

代码如下:

>>> A = collections.Counter([1, 2, 2])
>>> B = collections.Counter([2, 2, 3])
>>> A
Counter({2: 2, 1: 1})
>>> B
Counter({2: 2, 3: 1})
>>> A | B
Counter({2: 2, 1: 1, 3: 1})
>>> A & B
Counter({2: 2})
>>> A + B
Counter({2: 4, 1: 1, 3: 1})
>>> A – B
Counter({1: 1})
>>> B – A
Counter({3: 1})

1.23 统计在可迭代器中最常出现的元素

代码如下:

>>> A = collections.Counter([1, 1, 2, 2, 3, 3, 3, 3, 4, 5, 6, 7])
>>> A
Counter({3: 4, 1: 2, 2: 2, 4: 1, 5: 1, 6: 1, 7: 1})
>>> A.most_common(1)
[(3, 4)]
>>> A.most_common(3)
[(3, 4), (1, 2), (2, 2)]

1.24 两端都可操作的队列

代码如下:

>>> Q = collections.deque()
>>> Q.append(1)
>>> Q.appendleft(2)
>>> Q.extend([3, 4])
>>> Q.extendleft([5, 6])
>>> Q
deque([6, 5, 2, 1, 3, 4])
>>> Q.pop()
4
>>> Q.popleft()
6
>>> Q
deque([5, 2, 1, 3])
>>> Q.rotate(3)
>>> Q
deque([2, 1, 3, 5])
>>> Q.rotate(-3)
>>> Q
deque([5, 2, 1, 3])

1.25 有最大长度的双端队列

代码如下:

>>> last_three = collections.deque(maxlen=3)
>>> for i in xrange(10):
…     last_three.append(i)
…     print ‘, ‘.join(str(x) for x in last_three)

0
0, 1
0, 1, 2
1, 2, 3
2, 3, 4
3, 4, 5
4, 5, 6
5, 6, 7
6, 7, 8
7, 8, 9

1.26 可排序词典

代码如下:

>>> m = dict((str(x), x) for x in range(10))
>>> print ‘, ‘.join(m.keys())
1, 0, 3, 2, 5, 4, 7, 6, 9, 8
>>> m = collections.OrderedDict((str(x), x) for x in range(10))
>>> print ‘, ‘.join(m.keys())
0, 1, 2, 3, 4, 5, 6, 7, 8, 9
>>> m = collections.OrderedDict((str(x), x) for x in range(10, 0, -1))
>>> print ‘, ‘.join(m.keys())
10, 9, 8, 7, 6, 5, 4, 3, 2, 1

1.27 默认词典

代码如下:

>>> m = dict()
>>> m[‘a’]
Traceback (most recent call last):
  File “”, line 1, in
KeyError: ‘a’
>>>
>>> m = collections.defaultdict(int)
>>> m[‘a’]
0
>>> m[‘b’]
0
>>> m = collections.defaultdict(str)
>>> m[‘a’]

>>> m[‘b’] += ‘a’
>>> m[‘b’]
‘a’
>>> m = collections.defaultdict(lambda: ‘[default value]’)
>>> m[‘a’]
‘[default value]’
>>> m[‘b’]
‘[default value]’

1.28 默认字典的简单树状表达

代码如下:

>>> import json
>>> tree = lambda: collections.defaultdict(tree)
>>> root = tree()
>>> root[‘menu’][‘id’] = ‘file’
>>> root[‘menu’][‘value’] = ‘File’
>>> root[‘menu’][‘menuitems’][‘new’][‘value’] = ‘New’
>>> root[‘menu’][‘menuitems’][‘new’][‘onclick’] = ‘new();’
>>> root[‘menu’][‘menuitems’][‘open’][‘value’] = ‘Open’
>>> root[‘menu’][‘menuitems’][‘open’][‘onclick’] = ‘open();’
>>> root[‘menu’][‘menuitems’][‘close’][‘value’] = ‘Close’
>>> root[‘menu’][‘menuitems’][‘close’][‘onclick’] = ‘close();’
>>> print json.dumps(root, sort_keys=True, indent=4, separators=(‘,’, ‘: ‘))
{
    “menu”: {
        “id”: “file”,
        “menuitems”: {
            “close”: {
                “onclick”: “close();”,
                “value”: “Close”
            },
            “new”: {
                “onclick”: “new();”,
                “value”: “New”
            },
            “open”: {
                “onclick”: “open();”,
                “value”: “Open”
            }
        },
        “value”: “File”
    }
}

1.29 对象到唯一计数的映射

代码如下:

>>> import itertools, collections
>>> value_to_numeric_map = collections.defaultdict(itertools.count().next)
>>> value_to_numeric_map[‘a’]
0
>>> value_to_numeric_map[‘b’]
1
>>> value_to_numeric_map[‘c’]
2
>>> value_to_numeric_map[‘a’]
0
>>> value_to_numeric_map[‘b’]
1

1.30 最大和最小的几个列表元素

代码如下:

>>> a = [random.randint(0, 100) for __ in xrange(100)]
>>> heapq.nsmallest(5, a)
[3, 3, 5, 6, 8]
>>> heapq.nlargest(5, a)
[100, 100, 99, 98, 98]

1.31 两个列表的笛卡尔积

代码如下:

>>> for p in itertools.product([1, 2, 3], [4, 5]):
(1, 4)
(1, 5)
(2, 4)
(2, 5)
(3, 4)
(3, 5)
>>> for p in itertools.product([0, 1], repeat=4):
…     print ”.join(str(x) for x in p)

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

1.32 列表组合和列表元素替代组合

代码如下:

>>> for c in itertools.combinations([1, 2, 3, 4, 5], 3):
…     print ”.join(str(x) for x in c)

123
124
125
134
135
145
234
235
245
345
>>> for c in itertools.combinations_with_replacement([1, 2, 3], 2):
…     print ”.join(str(x) for x in c)

11
12
13
22
23
33

1.33 列表元素排列组合

代码如下:

>>> for p in itertools.permutations([1, 2, 3, 4]):
…     print ”.join(str(x) for x in p)

1234
1243
1324
1342
1423
1432
2134
2143
2314
2341
2413
2431
3124
3142
3214
3241
3412
3421
4123
4132
4213
4231
4312
4321

1.34 可链接迭代器

代码如下:

>>> a = [1, 2, 3, 4]
>>> for p in itertools.chain(itertools.combinations(a, 2), itertools.combinations(a, 3)):
…     print p

(1, 2)
(1, 3)
(1, 4)
(2, 3)
(2, 4)
(3, 4)
(1, 2, 3)
(1, 2, 4)
(1, 3, 4)
(2, 3, 4)
>>> for subset in itertools.chain.from_iterable(itertools.combinations(a, n) for n in range(len(a) + 1))
…     print subset

()
(1,)
(2,)
(3,)
(4,)
(1, 2)
(1, 3)
(1, 4)
(2, 3)
(2, 4)
(3, 4)
(1, 2, 3)
(1, 2, 4)
(1, 3, 4)
(2, 3, 4)
(1, 2, 3, 4)

1.35 根据文件指定列类聚

代码如下:

>>> import itertools
>>> with open(‘contactlenses.csv’, ‘r’) as infile:
…     data = [line.strip().split(‘,’) for line in infile]

>>> data = data[1:]
>>> def print_data(rows):
…     print ”.join(”.join(‘{: …

>>> print_data(data)
young               myope                   no                      reduced                 none
young               myope                   no                      normal                  soft
young               myope                   yes                     reduced                 none
young               myope                   yes                     normal                  hard
young               hypermetrope            no                      reduced                 none
young               hypermetrope            no                      normal                  soft
young               hypermetrope            yes                     reduced                 none
young               hypermetrope            yes                     normal                  hard
pre-presbyopic      myope                   no                      reduced                 none
pre-presbyopic      myope                   no                      normal                  soft
pre-presbyopic      myope                   yes                     reduced                 none
pre-presbyopic      myope                   yes                     normal                  hard
pre-presbyopic      hypermetrope            no                      reduced                 none
pre-presbyopic      hypermetrope            no                      normal                  soft
pre-presbyopic      hypermetrope            yes                     reduced                 none
pre-presbyopic      hypermetrope            yes                     normal                  none
presbyopic          myope                   no                      reduced                 none
presbyopic          myope                   no                      normal                  none
presbyopic          myope                   yes                     reduced                 none
presbyopic          myope                   yes                     normal                  hard
presbyopic          hypermetrope            no                      reduced                 none
presbyopic          hypermetrope            no                      normal                  soft
presbyopic          hypermetrope            yes                     reduced                 none
presbyopic          hypermetrope            yes                     normal                  none

>>> data.sort(key=lambda r: r[-1])
>>> for value, group in itertools.groupby(data, lambda r: r[-1]):
…     print ‘———–‘
…     print ‘Group: ‘ + value
…     print_data(group)

———–
Group: hard
young               myope                   yes                     normal                  hard
young               hypermetrope            yes                     normal                  hard
pre-presbyopic      myope                   yes                     normal                  hard
presbyopic          myope                   yes                     normal                  hard
———–
Group: none
young               myope                   no                      reduced                 none
young               myope                   yes                     reduced                 none
young               hypermetrope            no                      reduced                 none
young               hypermetrope            yes                     reduced                 none
pre-presbyopic      myope                   no                      reduced                 none
pre-presbyopic      myope                   yes                     reduced                 none
pre-presbyopic      hypermetrope            no                      reduced                 none
pre-presbyopic      hypermetrope            yes                     reduced                 none
pre-presbyopic      hypermetrope            yes                     normal                  none
presbyopic          myope                   no                      reduced                 none
presbyopic          myope                   no                      normal                  none
presbyopic          myope                   yes                     reduced                 none
presbyopic          hypermetrope            no                      reduced                 none
presbyopic          hypermetrope            yes                     reduced                 none
presbyopic          hypermetrope            yes                     normal                  none
———–
Group: soft
young               myope                   no                      normal                  soft
young               hypermetrope            no                      normal                  soft
pre-presbyopic      myope                   no                      normal                  soft
pre-presbyopic      hypermetrope            no                      normal                  soft
presbyopic          hypermetrope            no                      normal                  soft

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至253000106@qq.com举报,一经查实,本站将立刻删除。

发布者:PHP中文网,转转请注明出处:https://www.chuangxiangniao.com/p/2303978.html

(0)
上一篇 2025年2月28日 07:39:39
下一篇 2025年2月28日 07:39:52

AD推荐 黄金广告位招租... 更多推荐

相关推荐

  • DeepSeek如何本地部署-探索DeepSeek本地部署全面指南

    deepseek本地部署指南:高效运行深度学习模型 DeepSeek是一款强大的本地部署深度学习工具,专为AI开发者打造。本文将指导您完成DeepSeek的本地部署,并提供一些实用技巧,助您快速上手。 DeepSeek本地部署步骤 首先,请…

    2025年3月29日
    100
  • deepseek怎么用python调用

    在开始之前,请确保你的计算机上已安装python和pip。打开命令提示符(windows)或终端(mac/linux),输入以下命令来验证python和pip的安装情况: “` python –version pip…

    2025年3月29日
    100
  • 普通人怎样高效利用DeepSeek-DeepSeek使用技巧助普通人一臂之力

    在当今信息爆炸的时代,高效地获取和处理数据成为了我们日常生活和工作中不可或缺的技能。deepseek作为一款强大的数据搜索与分析工具,为普通人提供了一个便捷的途径来挖掘隐藏在海量数据中的宝贵信息。接下来,我们将详细介绍普通人如何用好deep…

    2025年3月29日
    100
  • 一键搭建DeepSeek-详尽指南教你如何本地部署DeepSeek

    本文将指导您如何在本地环境快速部署deepseek,无需繁琐配置。只需几步,即可轻松运行deepseek。 准备工作: 确保您的系统符合DeepSeek的最低运行要求,并已安装所有必要依赖项。 下载脚本: 从官方GitHub仓库获取最新的一…

    2025年3月29日
    100
  • deepseek怎么编程

    DeepSeek并非编程语言,而是深度搜索概念。实现DeepSeek需基于现有语言选择。针对不同应用场景,需要选择合适的语言和算法,并结合机器学习技术。代码质量、可维护性、测试至关重要。根据需求选择合适的编程语言、算法和工具,并编写高质量代…

    2025年3月29日
    100
  • 怎么下载deepseek 小米

    如何下载 DeepSeek 小米?在小米应用商店搜索“DeepSeek”,如未找到,则继续步骤 2。确定您的需求(搜索文件、数据分析),并找到包含 DeepSeek 功能的相应工具(如文件管理器、数据分析软件)。 怎么下载DeepSeek小…

    2025年3月29日
    100
  • deepseek该怎么搜索

    直接使用DeepSeek自带的搜索功能即可,它强大的语义分析算法能准确理解搜索意图,提供相关信息。但对于冷门领域、最新信息或需要思考问题的搜索,需要调整关键词或使用更具体的描述、结合其他实时信息来源,并明白DeepSeek只是一个工具,需要…

    2025年3月29日
    100
  • deepseek怎么问他

    有效使用DeepSeek的关键在于清晰提问:直接、具体地表达问题。提供具体细节和背景信息。对于复杂的询问,包含多个角度和反驳观点。关注特定方面,例如代码的性能瓶颈。对得到的答案保持批判性思维,结合专业知识进行判断。 DeepSeek怎么问它…

    2025年3月29日
    100
  • DeepSeek本地部署如何操作-DeepSeek本地安装步骤指南

    deepseek本地部署详解:快速搭建专属数据搜索平台 DeepSeek是一款功能强大的数据搜索与分析工具,本文将指导您完成DeepSeek的本地部署,构建高效的信息检索平台。 准备工作: 系统要求: 请确保您的服务器或电脑满足DeepSe…

    2025年3月29日
    100
  • deepseek怎么用来算账

    问题:DeepSeek是否可用于会计?回答:不是,它是一个数据挖掘和分析工具,可用于分析财务数据,但本身不具备会计软件的账目记录和报表生成功能。使用DeepSeek分析财务数据需要:编写代码来处理数据具备对数据结构、算法和DeepSeek …

    2025年3月29日
    100

发表回复

登录后才能评论