如何用Python做爬虫

入门”是良好的动机,但是可能作用缓慢。如果你手里或者脑子里有一个项目,那么实践起来你会被目标驱动,而不会像学习模块一样慢慢学习。

另外如果说知识体系里的每一个知识点是图里的点,依赖关系是边的话,那么这个图一定不是一个有向无环图。因为学习a的经验可以帮助你学习b。因此,你不需要学习怎么样“入门”,因为这样的“入门”点根本不存在!你需要学习的是怎么样做一个比较大的东西,在这个过程中,你会很快地学会需要学会的东西的。当然,你可以争论说需要先懂python,不然怎么学会python做爬虫呢?但是事实上,你完全可以在做这个爬虫的过程中学习python :d

看到前面很多答案都讲的“术”——用什么软件怎么爬,那我就讲讲“道”和“术”吧——爬虫怎么工作以及怎么在python实现。

先长话短说summarize一下:
你需要学习

基本的爬虫工作原理

基本的http抓取工具,scrapy

Bloom Filter: Bloom Filters by Example

如果需要大规模网页抓取,你需要学习分布式爬虫的概念。其实没那么玄乎,你只要学会怎样维护一个所有集群机器能够有效分享的分布式队列就好。最简单的实现是python-rq: https://github.com/nvie/rq

立即学习“Python免费学习笔记(深入)”;

rq和Scrapy的结合:darkrho/scrapy-redis · GitHub

后续处理,网页析取(grangier/python-goose · GitHub),存储(Mongodb)

以下是短话长说:

说说当初写的一个集群爬下整个豆瓣的经验吧。

1)首先你要明白爬虫怎样工作。
想象你是一只蜘蛛,现在你被放到了互联“网”上。那么,你需要把所有的网页都看一遍。怎么办呢?没问题呀,你就随便从某个地方开始,比如说人民日报的首页,这个叫initial pages,用$表示吧。

在人民日报的首页,你看到那个页面引向的各种链接。于是你很开心地从爬到了“国内新闻”那个页面。太好了,这样你就已经爬完了俩页面(首页和国内新闻)!暂且不用管爬下来的页面怎么处理的,你就想象你把这个页面完完整整抄成了个html放到了你身上。

突然你发现, 在国内新闻这个页面上,有一个链接链回“首页”。作为一只聪明的蜘蛛,你肯定知道你不用爬回去的吧,因为你已经看过了啊。所以,你需要用你的脑子,存下你已经看过的页面地址。这样,每次看到一个可能需要爬的新链接,你就先查查你脑子里是不是已经去过这个页面地址。如果去过,那就别去了。

好的,理论上如果所有的页面可以从initial page达到的话,那么可以证明你一定可以爬完所有的网页。

那么在python里怎么实现呢?
很简单
import Queueinitial_page = “http://www.renminribao.com”url_queue = Queue.Queue()seen = set()seen.insert(initial_page)url_queue.put(initial_page)while(True): 

#一直进行直到海枯石烂
   if url_queue.size()>0:
       current_url = url_queue.get()    #拿出队例中第一个的url
       store(current_url)               #把这个url代表的网页存储好
       for next_url in extract_urls(current_url): #提取把这个url里链向的url
           if next_url not in seen:      
               seen.put(next_url)
               url_queue.put(next_url)
   else:
       break
写得已经很伪代码了。

所有的爬虫的backbone都在这里,下面分析一下为什么爬虫事实上是个非常复杂的东西——搜索引擎公司通常有一整个团队来维护和开发。

2)效率
如果你直接加工一下上面的代码直接运行的话,你需要一整年才能爬下整个豆瓣的内容。更别说Google这样的搜索引擎需要爬下全网的内容了。

问题出在哪呢?需要爬的网页实在太多太多了,而上面的代码太慢太慢了。设想全网有N个网站,那么分析一下判重的复杂度就是N*log(N),因为所有网页要遍历一次,而每次判重用set的话需要log(N)的复杂度。OK,OK,我知道python的set实现是hash——不过这样还是太慢了,至少内存使用效率不高。

通常的判重做法是怎样呢?Bloom Filter. 简单讲它仍然是一种hash的方法,但是它的特点是,它可以使用固定的内存(不随url的数量而增长)以O(1)的效率判定url是否已经在set中。可惜天下没有白吃的午餐,它的唯一问题在于,如果这个url不在set中,BF可以100%确定这个url没有看过。但是如果这个url在set中,它会告诉你:这个url应该已经出现过,不过我有2%的不确定性。注意这里的不确定性在你分配的内存足够大的时候,可以变得很小很少。一个简单的教程:Bloom Filters by Example

注意到这个特点,url如果被看过,那么可能以小概率重复看一看(没关系,多看看不会累死)。但是如果没被看过,一定会被看一下(这个很重要,不然我们就要漏掉一些网页了!)。 [IMPORTANT: 此段有问题,请暂时略过]

好,现在已经接近处理判重最快的方法了。另外一个瓶颈——你只有一台机器。不管你的带宽有多大,只要你的机器下载网页的速度是瓶颈的话,那么你只有加快这个速度。用一台机子不够的话——用很多台吧!当然,我们假设每台机子都已经进了最大的效率——使用多线程(python的话,多进程吧)。

3)集群化抓取
爬取豆瓣的时候,我总共用了100多台机器昼夜不停地运行了一个月。想象如果只用一台机子你就得运行100个月了…

那么,假设你现在有100台机器可以用,怎么用python实现一个分布式的爬取算法呢?

我们把这100台中的99台运算能力较小的机器叫作slave,另外一台较大的机器叫作master,那么回顾上面代码中的url_queue,如果我们能把这个queue放到这台master机器上,所有的slave都可以通过网络跟master联通,每当一个slave完成下载一个网页,就向master请求一个新的网页来抓取。而每次slave新抓到一个网页,就把这个网页上所有的链接送到master的queue里去。同样,bloom filter也放到master上,但是现在master只发送确定没有被访问过的url给slave。Bloom Filter放到master的内存里,而被访问过的url放到运行在master上的Redis里,这样保证所有操作都是O(1)。(至少平摊是O(1),Redis的访问效率见:LINSERT – Redis)

考虑如何用python实现:
在各台slave上装好scrapy,那么各台机子就变成了一台有抓取能力的slave,在master上装好Redis和rq用作分布式队列。

代码于是写成

#slave.pycurrent_url = request_from_master()to_send = []for next_url in extract_urls(current_url):    to_send.append(next_url)store(current_url);send_to_master(to_send)#master.pydistributed_queue = DistributedQueue()bf = BloomFilter()initial_pages = "www.renmingribao.com"while(True):    if request == 'GET':        if distributed_queue.size()>0:            send(distributed_queue.get())        else:            break    elif request == 'POST':        bf.put(request.url)

登录后复制

好的,其实你能想到,有人已经给你写好了你需要的:darkrho/scrapy-redis · GitHub

4)展望及后处理
虽然上面用很多“简单”,但是真正要实现一个商业规模可用的爬虫并不是一件容易的事。上面的代码用来爬一个整体的网站几乎没有太大的问题。

但是如果附加上你需要这些后续处理,比如

有效地存储(数据库应该怎样安排)

有效地判重(这里指网页判重,咱可不想把人民日报和抄袭它的大民日报都爬一遍)

有效地信息抽取(比如怎么样抽取出网页上所有的地址抽取出来,“朝阳区奋进路中华道”),搜索引擎通常不需要存储所有的信息,比如图片我存来干嘛…

及时更新(预测这个网页多久会更新一次)

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至253000106@qq.com举报,一经查实,本站将立刻删除。

发布者:PHP中文网,转转请注明出处:https://www.chuangxiangniao.com/p/2282559.html

(0)
上一篇 2025年2月27日 19:32:07
下一篇 2025年2月26日 21:03:44

AD推荐 黄金广告位招租... 更多推荐

相关推荐

  • Python和JavaScript间代码转换4个工具

    python 还是 javascript?虽然不少朋友还在争论二者目前谁更强势、谁又拥有着更为光明的发展前景,但毫无疑问,二者的竞争在 web 前端领域已经拥有明确的答案。立足于浏览器平台,如果放弃 javascript,我们也就没什么可选…

    编程技术 2025年2月27日
    200
  • 详解Python垃圾回收机制

    引用计数 python默认的垃圾收集机制是“引用计数”,每个对象维护了一个ob_ref字段。它的优点是机制简单,当新的引用指向该对象时,引用计数加1,当一个对象的引用被销毁时减1,一旦对象的引用计数为0,该对象立即被回收,所占用的内存将被释…

    编程技术 2025年2月27日
    200
  • Python 列表排序方法

    python语言中的列表排序方法有三个:reverse反转/倒序排序、sort正序排序、sorted可以获取排序后的列表。在更高级列表排序中,后两中方法还可以加入条件参数进行排序。reverse()方法 将列表中元素反转排序,比如下面这样&…

    编程技术 2025年2月27日
    200
  • Python重新加载模块方法

    为防止两个模块互相导入的问题,python默认所有的模块都只导入一次,如果需要重新导入模块, Python2.7可以直接用reload(),Python3可以用下面几种方法:   方法一:基本方法 from imp import reloa…

    编程技术 2025年2月27日
    200
  • 十个Python程序员易犯的错误

    不管是在学习还是工作过程中,人都会犯错。虽然python的语法简单、灵活,但也一样存在一些不小的坑,一不小心,初学者和资深python程序员都有可能会栽跟头。本文为大家分享了10大常见错误,需要的朋友可以参考下常见错误1:错误地将表达式作为…

    编程技术 2025年2月27日
    200
  • Python的静态方法和类成员方法

    python的静态方法和类成员方法都可以被类或实例访问,两者概念不容易理清,但还是有区别的: 1)静态方法无需传入self参数,类成员方法需传入代表本类的cls参数;(参数cls代表本类) 2)从第1条,静态方法是无法访问实例变量的,而类成…

    编程技术 2025年2月27日
    200
  • Python2.x与3??.x版本区别

    python的3.0版本,常被称为python 3000,或简称py3k。相对于python的早期版本,这是一个较大的升级。 为了不带入过多的累赘,Python 3.0在设计的时候没有考虑向下相容。 许多针对早期Python版本设计的程式都…

    编程技术 2025年2月27日
    200
  • Python多线程

    多线程类似于同时执行多个不同程序,多线程运行有如下优点: 使用线程可以把占据长时间的程序中的任务放到后台去处理。 用户界面可以更加吸引人,这样比如用户点击了一个按钮去触发某些事件的处理,可以弹出一个进度条来显示处理的进度 程序的运行速度可能…

    编程技术 2025年2月27日
    200
  • Python正则表达式

    正则表达式是一个特殊的字符序列,它能帮助你方便的检查一个字符串是否与某种模式匹配。python 自1.5版本起增加了re 模块,它提供 perl 风格的正则表达式模式。 re 模块使 Python 语言拥有全部的正则表达式功能。 compi…

    编程技术 2025年2月27日
    200
  • 人生苦短 我用Python

    python是我喜欢的语言,简洁、优美、易用。前两天,我很激昂地向朋友宣传python的好处。   “好吧,我承认Python不错,但它为什么叫Python呢?”   “呃,似乎是一个电视剧的名字。”   “那你说的Guido是美国人么?”…

    2025年2月27日
    200

发表回复

登录后才能评论