这篇文章主要介绍了关于用python处理图片实现图像中的像素访问,有着一定的参考价值,现在分享给大家,有需要的朋友可以参考一下
前面的一些例子中,我们都是利用Image.open()来打开一幅图像,然后直接对这个PIL对象进行操作。如果只是简单的操作还可以,但是如果操作稍微复杂一些,就比较吃力了。因此,通常我们加载完图片后,都是把图片转换成矩阵来进行更加复杂的操作。
python中利用numpy库和scipy库来进行各种数据操作和科学计算。我们可以通过pip来直接安装这两个库
pip install numpypip install scipy
登录后复制
以后,只要是在python中进行数字图像处理,我们都需要导入这些包:
立即学习“Python免费学习笔记(深入)”;
from PIL import Imageimport numpy as npimport matplotlib.pyplot as plt
登录后复制
打开图像并转化为矩阵,并显示:
from PIL import Imageimport numpy as npimport matplotlib.pyplot as pltimg=np.array(Image.open('d:/lena.jpg')) #打开图像并转化为数字矩阵plt.figure("dog")plt.imshow(img)plt.axis('off')plt.show()
登录后复制
调用numpy中的array()函数就可以将PIL对象转换为数组对象。
查看图片信息,可用如下的方法:
print img.shape print img.dtype print img.size print type(img)
登录后复制
如果是RGB图片,那么转换为array之后,就变成了一个rows*cols*channels的三维矩阵,因此,我们可以使用img[i,j,k]来访问像素值。
例1:打开图片,并随机添加一些椒盐噪声
from PIL import Imageimport numpy as npimport matplotlib.pyplot as pltimg=np.array(Image.open('d:/ex.jpg'))#随机生成5000个椒盐rows,cols,dims=img.shapefor i in range(5000): x=np.random.randint(0,rows) y=np.random.randint(0,cols) img[x,y,:]=255 plt.figure("beauty")plt.imshow(img)plt.axis('off')plt.show()
登录后复制
例2:将lena图像二值化,像素值大于128的变为1,否则变为0
from PIL import Imageimport numpy as npimport matplotlib.pyplot as pltimg=np.array(Image.open('d:/pic/lena.jpg').convert('L'))rows,cols=img.shapefor i in range(rows): for j in range(cols): if (img[i,j]如果要对多个像素点进行操作,可以使用数组切片方式访问。切片方式返回的是以指定间隔下标访问 该数组的像素值。下面是有关灰度图像的一些例子:
img[i,:] = im[j,:] # 将第 j 行的数值赋值给第 i 行img[:,i] = 100 # 将第 i 列的所有数值设为 100img[:100,:50].sum() # 计算前 100 行、前 50 列所有数值的和img[50:100,50:100] # 50~100 行,50~100 列(不包括第 100 行和第 100 列)img[i].mean() # 第 i 行所有数值的平均值img[:,-1] # 最后一列img[-2,:] (or im[-2]) # 倒数第二行登录后复制
相关推荐:
python处理Excel xlrd的方法介绍
以上就是用python处理图片实现图像中的像素访问的详细内容,更多请关注【创想鸟】其它相关文章!
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至253000106@qq.com举报,一经查实,本站将立刻删除。
发布者:PHP中文网,转转请注明出处:https://www.chuangxiangniao.com/p/2262740.html