什么是python分布式进程?(实例解析)

在这篇文章之中我们来了解一下什么是python分布式进程。了解一下python分布式进程的相关知识,以及分布式进程在python编程之中能起到什么样的作用。

在Thread和Process中,应当优选Process,因为Process更稳定,而且,Process可以分布到多台机器上,而Thread最多只能分布到同一台机器的多个CPU上。

Python的multiprocessing模块不但支持多进程,其中managers子模块还支持把多进程分布到多台机器上。一个服务进程可以作为调度者,将任务分布到其他多个进程中,依靠网络通信。由于managers模块封装很好,不必了解网络通信的细节,就可以很容易地编写分布式多进程程序。

举个例子:如果我们已经有一个通过Queue通信的多进程程序在同一台机器上运行,现在,由于处理任务的进程任务繁重,希望把发送任务的进程和处理任务的进程分布到两台机器上。怎么用分布式进程实现?

原有的Queue可以继续使用,但是,通过managers模块把Queue通过网络暴露出去,就可以让其他机器的进程访问Queue了。

立即学习“Python免费学习笔记(深入)”;

我们先看服务进程,服务进程负责启动Queue,把Queue注册到网络上,然后往Queue里面写入任务:

# task_master.pyimport random, time, queuefrom multiprocessing.managers import BaseManager# 发送任务的队列:task_queue = queue.Queue()# 接收结果的队列:result_queue = queue.Queue()# 从BaseManager继承的QueueManager:class QueueManager(BaseManager):    pass# 把两个Queue都注册到网络上, callable参数关联了Queue对象:QueueManager.register('get_task_queue', callable=lambda: task_queue)QueueManager.register('get_result_queue', callable=lambda: result_queue)# 绑定端口5000, 设置验证码'abc':manager = QueueManager(address=('', 5000), authkey=b'abc')# 启动Queue:manager.start()# 获得通过网络访问的Queue对象:task = manager.get_task_queue()result = manager.get_result_queue()# 放几个任务进去:for i in range(10):    n = random.randint(0, 10000)    print('Put task %d...' % n)    task.put(n)# 从result队列读取结果:print('Try get results...')for i in range(10):    r = result.get(timeout=10)    print('Result: %s' % r)# 关闭:manager.shutdown()

登录后复制

请注意,当我们在一台机器上写多进程程序时,创建的Queue可以直接拿来用,但是,在分布式多进程环境下,添加任务到Queue不可以直接对原始的task_queue进行操作,那样就绕过了QueueManager的封装,必须通过manager.get_task_queue()获得的Queue接口添加。

然后,在另一台机器上启动任务进程(本机上启动也可以):

# task_master.pyimport random, time, queuefrom multiprocessing.managers import BaseManager# 发送任务的队列:task_queue = queue.Queue()# 接收结果的队列:result_queue = queue.Queue()# 从BaseManager继承的QueueManager:class QueueManager(BaseManager):    pass# 把两个Queue都注册到网络上, callable参数关联了Queue对象:QueueManager.register('get_task_queue', callable=lambda: task_queue)QueueManager.register('get_result_queue', callable=lambda: result_queue)# 绑定端口5000, 设置验证码'abc':manager = QueueManager(address=('', 5000), authkey=b'abc')# 启动Queue:manager.start()# 获得通过网络访问的Queue对象:task = manager.get_task_queue()result = manager.get_result_queue()# 放几个任务进去:for i in range(10):    n = random.randint(0, 10000)    print('Put task %d...' % n)    task.put(n)# 从result队列读取结果:print('Try get results...')for i in range(10):    r = result.get(timeout=10)    print('Result: %s' % r)# 关闭:manager.shutdown()

登录后复制

任务进程要通过网络连接到服务进程,所以要指定服务进程的IP。

现在,可以试试分布式进程的工作效果了。先启动task_master.py服务进程:

$ python3 task_master.py Put task 3411...Put task 1605...Put task 1398...Put task 4729...Put task 5300...Put task 7471...Put task 68...Put task 4219...Put task 339...Put task 7866...Try get results...

登录后复制

task_master.py进程发送完任务后,开始等待result队列的结果。现在启动task_worker.py进程:

$ python3 task_worker.pyConnect to server 127.0.0.1...run task 3411 * 3411...run task 1605 * 1605...run task 1398 * 1398...run task 4729 * 4729...run task 5300 * 5300...run task 7471 * 7471...run task 68 * 68...run task 4219 * 4219...run task 339 * 339...run task 7866 * 7866...worker exit.

登录后复制

task_worker.py进程结束,在task_master.py进程中会继续打印出结果:

Result: 3411 * 3411 = 11634921Result: 1605 * 1605 = 2576025Result: 1398 * 1398 = 1954404Result: 4729 * 4729 = 22363441Result: 5300 * 5300 = 28090000Result: 7471 * 7471 = 55815841Result: 68 * 68 = 4624Result: 4219 * 4219 = 17799961Result: 339 * 339 = 114921Result: 7866 * 7866 = 61873956

登录后复制

这个简单的Master/Worker模型有什么用?其实这就是一个简单但真正的分布式计算,把代码稍加改造,启动多个worker,就可以把任务分布到几台甚至几十台机器上,比如把计算n*n的代码换成发送邮件,就实现了邮件队列的异步发送。

而Queue之所以能通过网络访问,就是通过QueueManager实现的。由于QueueManager管理的不止一个Queue,所以,要给每个Queue的网络调用接口起个名字,比如get_task_queue。

authkey有什么用?这是为了保证两台机器正常通信,不被其他机器恶意干扰。如果task_worker.py的authkey和task_master.py的authkey不一致,肯定连接不上。

Python的分布式进程接口简单,封装良好,适合需要把繁重任务分布到多台机器的环境下。

注意Queue的作用是用来传递任务和接收结果,每个任务的描述数据量要尽量小。比如发送一个处理日志文件的任务,就不要发送几百兆的日志文件本身,而是发送日志文件存放的完整路径,由Worker进程再去共享的磁盘上读取文件。

以上就是本篇文章所讲述的所有内容,这篇文章主要介绍了python分布式进程的相关知识,希望你能借助资料从而理解上述所说的内容。希望我在这片文章所讲述的内容能够对你有所帮助,让你学习python更加轻松。

更多相关知识,请访问【创想鸟】Python教程栏目。

以上就是什么是python分布式进程?(实例解析)的详细内容,更多请关注【创想鸟】其它相关文章!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至253000106@qq.com举报,一经查实,本站将立刻删除。

发布者:PHP中文网,转转请注明出处:https://www.chuangxiangniao.com/p/2261411.html

(0)
上一篇 2025年2月27日 06:13:17
下一篇 2025年2月27日 06:13:33

AD推荐 黄金广告位招租... 更多推荐

相关推荐

发表回复

登录后才能评论