本篇文章给大家带来的内容是关于python中协程的详解(附示例),有一定的参考价值,有需要的朋友可以参考一下,希望对你有所帮助。
协程,又称微线程,纤程。英文名Coroutine
协程看上去也是子程序,但执行过程中,在子程序内部可中断,然后转而执行别的子程序,在适当的时候再返回来接着执行。
最大的优势就是协程极高的执行效率。因为子程序切换不是线程切换,而是由程序自身控制,因此,没有线程切换的开销,和多线程比,线程数量越多,协程的性能优势就越明显。
第二大优势就是不需要多线程的锁机制,因为只有一个线程,也不存在同时写变量冲突,在协程中控制共享资源不加锁,只需要判断状态就好了,所以执行效率比多线程高很多。
因为协程是一个线程执行,那怎么利用多核CPU呢?最简单的方法是多进程+协程,既充分利用多核,又充分发挥协程的高效率,可获得极高的性能。
yield实现协程
Python对协程的支持还非常有限,用在generator中的yield可以一定程度上实现协程。虽然支持不完全,但已经可以发挥相当大的威力了。
import threadingimport timedef producer(c): c.__next__() n=0 while n c.send(n) --> n更新 n = yield r if not n: break print('[消费者]正在调用第%s条数据' %(n)) time.sleep(1) r = 'This is ok!'if __name__=='__main__': print(threading.current_thread()) print(threading.active_count()) #查看当前进行的线程 c = consumer() producer(c) #函数中有yield, 返回值为生成器; print(threading.active_count()) #1
登录后复制
立即学习“Python免费学习笔记(深入)”;
gevent库实现协程
Python通过yield提供了对协程的基本支持,但是不完全。而第三方的gevent为Python提供了比较完善的协程支持。
gevent是第三方库,通过greenlet实现协程,其基本思想是:
当一个greenlet遇到IO操作时,比如访问网络,就自动切换到其他的greenlet,等到IO操作完成,再在适当的时候切换回来继续执行。由于IO操作非常耗时,经常使程序处于等待状态,有了gevent为我们自动切换协程,就保证总有greenlet在运行,而不是等待IO。
由于切换是在IO操作时自动完成,所以gevent需要修改Python自带的一些标准库,这一过程在启动时通过monkey patch完成。
假设多协程执行的任务, 没有IO操作或者等待, 那么协程间是依次运行, 而不是交替运行;
假设多协程执行的任务, IO操作或者等待, 那么协程间是交替运行;
#没有等待import geventfrom gevent import monkeymonkey.patch_all()def job(n): for i in range(n): print(gevent.getcurrent(),i)def mian(): g1 = gevent.spawn(job,1) g2 = gevent.spawn(job,2) g3 = gevent.spawn(job,3) gevent.joinall([g1,g2,g3]) print('协程执行任务结束...')if __name__=="__main__": mian()
登录后复制
"""#有等待import timefrom gevent import monkeymonkey.patch_all()import geventdef job(n): for i in range(n): print(gevent.getcurrent(), i) time.sleep(1)def main1(): # 创建三个协程, 并让该协程执行job任务 g1 = gevent.spawn(job, 2) g2 = gevent.spawn(job, 3) g3 = gevent.spawn(job, 2) # 等待所有的协程执行结束, 再执行主程序; gevent.joinall([g1, g2, g3]) print("任务执行结束.....")main1()
登录后复制
协程与线程
做一个关于协程和线程花费时间的对比实验,不具有参考性 。
import timeimport gevent #导入协程from gevent import monkeyfrom urllib.request import urlopen #连接网络from mytimeit import timeit #导入计算时间的装饰器from concurrent.futures import ThreadPoolExecutor #导入线程池def get_len_url(url): with urlopen(url) as u_conn: data = u_conn.read()# print('%s该网页共%s字节' %(url,len(data)))urls = ['http://httpbin.org', 'http://example.com/']*100@timeitdef coroutineall(): gevents = [gevent.spawn(get_len_url,url) for url in urls] gevent.joinall(gevents)@timeitdef threadall(): with ThreadPoolExecutor(max_workers=100) as thpool: thpool.map(get_len_url,urls)if __name__=="__main__": coroutineall() threadall()
登录后复制
以上就是python中协程的详解(附示例)的详细内容,更多请关注【创想鸟】其它相关文章!
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至253000106@qq.com举报,一经查实,本站将立刻删除。
发布者:PHP中文网,转转请注明出处:https://www.chuangxiangniao.com/p/2260524.html