细说利用Splunk监控Kubernetes运行性能

部署架构

下图是该方案的部署架构,主要包括:

利用Heapster收集K8s的性能数据,包含CPU,Memory,Network,File System等

利用Heapster的Statsd Sink,发送数据到Splunk的Metrics Store

利用Splunk的搜索命令和仪表盘功能对性能数据进行监控
细说利用Splunk监控Kubernetes运行性能

前期准备

前期主要要准备好两件事:

编译最新的Heapster的镜像,并上传到某个公共的Docker镜像仓库,例如docker hub

在Splunk中配置Metrics Store和对应的网络输入(Network Input UDP/TCP)

这里主要要做的选择是Statsd的传输协议用UDP还是TCP。这里我推荐使用TCP。 最新的Heapster代码支持不同的Backend,包含了log, influxdb, stackdriver, gcp monitoring, gcp logging, statsd, hawkular-metrics, wavefront, openTSDB, kafka, riemann, elasticsearch等等。因为Splunk的Metrics Store支持statsd协议,所以可以很容易的和Heapster集成。

首先我们需要利用最新的heapster代码,编译一个容器镜像,因为docker hub上的heapsterd的官方镜像的版本比较旧,并不支持statsd。所以需要自己编译。

mkdir myheapstermkdir myheapster/srcexport GOPATH=myheapstercd myheapster/srcgit clone https://github.com/kubernetes/heapster.gitcd heapstermake container

登录后复制

运行以上的命令来编译最新的heapster镜像。

注意,heapster缺省使用udp协议,如果想要使用tcp,需要修改代码

https://github.com/kubernetes/heapster/blob/master/metrics/sinks/statsd/statsd_client.go

func (client *statsdClientImpl) open() error {var err errorclient.conn, err = net.Dial("udp", client.host)if err != nil {glog.Errorf("Failed to open statsd client connection : %v", err)} else {glog.V(2).Infof("statsd client connection opened : %+v", client.conn)}return err}

登录后复制

把udp改成tcp。

我在docker hub上放了两个镜像,分别对应udp版本的tcp版本,大家可以直接使用

naughtytao/heapster-amd64:v1.5.0-beta.3 udp

naughtytao/heapster-amd64:v1.5.0-beta.4 tcp

然后需要在Splunk中配置Metrics Store,参考这个文档
细说利用Splunk监控Kubernetes运行性能

安装配置Heapster

在K8s上部署heapster比较容易,创建对应的yaml配置文件,然后用kubectl命令行创建就好了。

以下是Deployment和Service的配置文件:

deployment.yaml

apiVersion: extensions/v1beta1kind: Deploymentmetadata:  name: heapster  namespace: kube-systemspec:  replicas: 1  template:    metadata:      labels:        task: monitoring        k8s-app: heapster        version: v6    spec:      containers:      - name: heapster        image: naughtytao/heapster-amd64:v1.5.0-beta.3        imagePullPolicy: Always        command:        - /heapster        - --source=kubernetes:https://kubernetes.default        - --sink=statsd:udp://ip:port?numMetricsPerMsg=1

登录后复制

service.yaml

apiVersion: v1kind: Servicemetadata:  labels:    task: monitoring    # For use as a Cluster add-on (https://github.com/kubernetes/kubernetes/tree/master/cluster/addons)    # If you are NOT using this as an addon, you should comment out this line.    kubernetes.io/cluster-service: 'true'    kubernetes.io/name: Heapster  name: heapster  namespace: kube-systemspec:  ports:  - port: 80    targetPort: 8082  selector:    k8s-app: heapster

登录后复制

注意这里deployment的–sink的配置,ip是Splunk的IP或者主机名,port的对应的Splunk的data input的端口号。当使用udp协议的时候,需要配置的numMetricsPerMsg的值比较小,当这个值比较大的时候,会出message too long的error。当使用tcp的时候可以配置较大的数值。

运行 kubectl apply -f *.yaml 来部署heapster

如果正常运行,对应的heapster pod的日志如下

I0117 18:10:56.054746       1 heapster.go:78] /heapster --source=kubernetes:https://kubernetes.default --sink=statsd:udp://ec2-34-203-25-154.compute-1.amazonaws.com:8124?numMetricsPerMsg=10I0117 18:10:56.054776       1 heapster.go:79] Heapster version v1.5.0-beta.4I0117 18:10:56.054963       1 configs.go:61] Using Kubernetes client with master "https://kubernetes.default" and version v1I0117 18:10:56.054978       1 configs.go:62] Using kubelet port 10255I0117 18:10:56.076200       1 driver.go:104] statsd metrics sink using configuration : {host:ec2-34-203-25-154.compute-1.amazonaws.com:8124 prefix: numMetricsPerMsg:10 protocolType:etsystatsd renameLabels:map[] allowedLabels:map[] customizeLabel:0x15fc8c0}I0117 18:10:56.076248       1 driver.go:104] statsd metrics sink using configuration : {host:ec2-34-203-25-154.compute-1.amazonaws.com:8124 prefix: numMetricsPerMsg:10 protocolType:etsystatsd renameLabels:map[] allowedLabels:map[] customizeLabel:0x15fc8c0}I0117 18:10:56.076272       1 heapster.go:202] Starting with StatsD SinkI0117 18:10:56.076281       1 heapster.go:202] Starting with Metric SinkI0117 18:10:56.090229       1 heapster.go:112] Starting heapster on port 8082

登录后复制在Splunk中进行监控

好了如果一切正常的化,heapster会用statsd的协议和格式发送metrics到Splunk的metrics store。

然后就可以用利用SPL的mstats和mcatalog命令来分析,监控metrics数据了。

以下搜索语句列出所有的Metrics

| mcatalog values(metric_name)

登录后复制

细说利用Splunk监控Kubernetes运行性能

以下搜索语句列出整个cluster的CPU使用,我们可以用Area或者Line Chart来可视化搜索结果。

| mstats avg(_value) WHERE metric_name=cluster.cpu/usage_rate span=30m

登录后复制

细说利用Splunk监控Kubernetes运行性能

kube-system namespace的对应内存使用情况

| mstats avg(_value) WHERE metric_name=namespace.kube-system.memory/usage span=30m

登录后复制

细说利用Splunk监控Kubernetes运行性能

大家可以把自己感兴趣的分析结果放在Dashboard中,利用Realtime设置进行监控。
细说利用Splunk监控Kubernetes运行性能

好了,更多的分析选项可以参考Splunk文档。

以上就是细说利用Splunk监控Kubernetes运行性能的详细内容,更多请关注【创想鸟】其它相关文章!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至253000106@qq.com举报,一经查实,本站将立刻删除。

发布者:PHP中文网,转转请注明出处:https://www.chuangxiangniao.com/p/2195100.html

(0)
上一篇 2025年2月25日 20:25:47
下一篇 2025年2月25日 20:26:05

AD推荐 黄金广告位招租... 更多推荐

相关推荐

发表回复

登录后才能评论