如何优化大型 JSON 文件以与 ChatGPT API 一起使用?

我正在尝试使用 chatgpt 作为我的 magento 2 网站的聊天机器人,并且我想将产品数据传递给它。为此,我收集了所有产品并将它们存储在一个 json 文件中,然后读取该文件以将数据嵌入到系统角色的 systemrolecontent 中。然而,我面临的问题是 json 文件相当大。

{    "bot_response": "error: chatbot error: unexpected api response structure: {    "error": {        "message": "request too large for gpt-4o on tokens per min (tpm): limit 30000, requested 501140. the input or output tokens must be reduced in order to run successfully. visit https://platform.openai.com/account/rate-limits to learn more.",        "type": "tokens",        "param": null,        "code": "rate_limit_exceeded"    }}"}

登录后复制

我注意到需要在 api 配置中添加一个功能,该功能允许您运行查询来根据名称或描述中与用户消息中的关键字匹配的关键字来选择产品。挑战在于用户最初可能不知道产品的名称;他们来到聊天机器人是为了发现他们。我该如何解决这个问题?

这是我现在正在使用的代码:

authorization = 'sk-proj-';        $this->endpoint = 'https://api.openai.com/v1/chat/completions';        $this->productsFile = __DIR__ . '/products.json';        $this->fetchingDateFile = __DIR__ . '/fetching_date.json';        $currentTime = time();        $timeDifferenceSeconds = 24 * 3600;        if (!file_exists($this->fetchingDateFile)) {            file_put_contents($this->fetchingDateFile, json_encode(['last_fetch_time' => 0]));        }        $fetchingData = json_decode(file_get_contents($this->fetchingDateFile), true);        $lastFetchTime = $fetchingData['last_fetch_time'] ?? 0;        if ($currentTime - $lastFetchTime > $timeDifferenceSeconds) {            $products = $this->fetchProductsUsingModel();            $productsJson = json_encode($products);            file_put_contents($this->productsFile, $productsJson);            $fetchingData['last_fetch_time'] = $currentTime;            file_put_contents($this->fetchingDateFile, json_encode($fetchingData));            $this->didFetchProducts = true;        }        $jsonSampleData = file_get_contents($this->productsFile);        $systemRoleContent = <<conversationHistory[] = [            'role' => 'system',            'content' => $systemRoleContent        ];        if (session_status() == PHP_SESSION_NONE) {            session_start();        }        if (isset($_SESSION['chat_history'])) {            $this->conversationHistory = $_SESSION['chat_history'];        }    }    public function fetchProductsUsingModel(): array    {        return $products;    }    private function getCategoryNames(array $categoryIds): array    {        return $categoryNames;    }    public function sendMessage(string $message): array    {        try {            $this->conversationHistory[] = [                'role' => 'user',                'content' => $message            ];            $data = [                'model' => 'gpt-4o',                'messages' => array_map(function ($msg) {                    return [                        'role' => $msg['role'] === 'bot' ? 'assistant' : $msg['role'],                        'content' => $msg['content']                    ];                }, $this->conversationHistory)            ];            $response = $this->makeApiRequest($data);            $arrResult = json_decode($response, true);            if (json_last_error() !== JSON_ERROR_NONE) {                throw new Exception('Invalid API response format');            }            if (!isset($arrResult['choices']) || !isset($arrResult['choices'][0]['message']['content'])) {                throw new Exception('Unexpected API response structure: ' . $response);            }            $assistantResponse = $arrResult['choices'][0]['message']['content'];            $this->conversationHistory[] = [                'role' => 'bot',                'content' => $assistantResponse            ];            $_SESSION['chat_history'] = $this->conversationHistory;            return [                "conversationHistory" => $_SESSION['chat_history'],                'didFetchProducts' => $this->didFetchProducts,                'response' => $assistantResponse,            ];        } catch (Exception $e) {            throw new Exception('ChatBot Error: ' . $e->getMessage());        }    }    private function makeApiRequest(array $data): string    {        $ch = curl_init();        curl_setopt_array($ch, [            CURLOPT_URL => $this->endpoint,            CURLOPT_POST => true,            CURLOPT_POSTFIELDS => json_encode($data),            CURLOPT_HTTPHEADER => [                'Content-Type: application/json',                'Authorization: Bearer ' . $this->authorization,            ],            CURLOPT_RETURNTRANSFER => true,            CURLOPT_SSL_VERIFYPEER => false,            CURLOPT_SSL_VERIFYHOST => 0        ]);        $response = curl_exec($ch);        if (curl_errno($ch)) {            $error = curl_error($ch);            curl_close($ch);            throw new Exception('API request failed: ' . $error);        }        curl_close($ch);        return $response;    }}

登录后复制

以上就是如何优化大型 JSON 文件以与 ChatGPT API 一起使用?的详细内容,更多请关注【创想鸟】其它相关文章!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至253000106@qq.com举报,一经查实,本站将立刻删除。

发布者:PHP中文网,转转请注明出处:https://www.chuangxiangniao.com/p/1416773.html

(0)
上一篇 2025年2月17日 22:50:09
下一篇 2025年2月17日 22:50:42

AD推荐 黄金广告位招租... 更多推荐

相关推荐

发表回复

登录后才能评论