二年前,我写了《相似图片搜索的原理》,介绍了一种最简单的实现方法。
昨天,我在isnowfy的网站看到,还有其他两种方法也很简单,这里做一些笔记。
一、颜色分布法
每张图片都可以生成颜色分布的直方图(color histogram)。如果两张图片的直方图很接近,就可以认为它们很相似。
任何一种颜色都是由红绿蓝三原色(RGB)构成的,所以上图共有4张直方图(三原色直方图 + 最后合成的直方图)。
如果每种原色都可以取256个值,那么整个颜色空间共有1600万种颜色(256的三次方)。针对这1600万种颜色比较直方图,计算量实在太大了,因此需要采用简化方法。可以将0~255分成四个区:0~63为第0区,64~127为第1区,128~191为第2区,192~255为第3区。这意味着红绿蓝分别有4个区,总共可以构成64种组合(4的3次方)。
任何一种颜色必然属于这64种组合中的一种,这样就可以统计每一种组合包含的像素数量。
上图是某张图片的颜色分布表,将表中最后一栏提取出来,组成一个64维向量(7414, 230, 0, 0, 8, …, 109, 0, 0, 3415, 53929)。这个向量就是这张图片的特征值或者叫”指纹”。
于是,寻找相似图片就变成了找出与其最相似的向量。这可以用皮尔逊相关系数或者余弦相似度算出。
二、内容特征法
除了颜色构成,还可以从比较图片内容的相似性入手。
首先,将原图转成一张较小的灰度图片,假定为50×50像素。然后,确定一个阙值,将灰度图片转成黑白图片。
如果两张图片很相似,它们的黑白轮廓应该是相近的。于是,问题就变成了,第一步如何确定一个合理的阙值,正确呈现照片中的轮廓?
显然,前景色与背景色反差越大,轮廓就越明显。这意味着,如果我们找到一个值,可以使得前景色和背景色各自的”类内差异最小” (minimizing the intra-class variance),或者”类间差异最大”(maximizing the inter-class variance),那么这个值就是理想的阙值。
1979年,日本学者大津展之证明了,”类内差异最小”与”类间差异最大”是同一件事,即对应同一个阙值。他提出一种简单的算法,可以求出这个阙值,这被称为”大津法”(Otsu’s method)。下面就是他的计算方法。
假定一张图片共有n个像素,其中灰度值小于阙值的像素为 n1 个,大于等于阙值的像素为 n2 个( n1 + n2 = n )。w1 和 w2 表示这两种像素各自的比重。
w1 = n1 / n
w2 = n2 / n
再假定,所有灰度值小于阙值的像素的平均值和方差分别为 μ1 和 σ1,所有灰度值大于等于阙值的像素的平均值和方差分别为 μ2 和 σ2。于是,可以得到
类内差异 = w1(σ1的平方) + w2(σ2的平方)
类间差异 = w1w2(μ1-μ2)^2
可以证明,这两个式子是等价的:得到”类内差异”的最小值,等同于得到”类间差异”的最大值。不过,从计算难度看,后者的计算要容易一些。
下一步用”穷举法”,将阙值从灰度的最低值到最高值,依次取一遍,分别代入上面的算式。使得”类内差异最小”或”类间差异最大”的那个值,就是最终的阙值。
有了50×50像素的黑白缩略图,就等于有了一个50×50的0-1矩阵。矩阵的每个值对应原图的一个像素,0表示黑色,1表示白色。这个矩阵就是一张图片的特征矩阵。
两个特征矩阵的不同之处越少,就代表两张图片越相似。这可以用”异或运算”实现(即两个值之中只有一个为1,则运算结果为1,否则运算结果为0)。对不同图片的特征矩阵进行”异或运算”,结果中的1越少,就是越相似的图片。
(完)
本文作者:阮一峰
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至253000106@qq.com举报,一经查实,本站将立刻删除。
发布者:卢松松,转转请注明出处:https://www.chuangxiangniao.com/p/1069336.html