-
Python:如何创建和可视化点云
1、简介点云应用无处不在:机器人、自动驾驶汽车、辅助系统、医疗保健等。点云是一种适合处理现实世界数据的3D表示,特别是在需要场景/对象的几何形状时,如对象的距离、形状和大小。点云是一组点,代表现实世界中的场景或空间中的对象。它是几何对象和场景的离散表示。换句话说,点云PCD是n个点的集合,其中每个点Pi用其3D坐标表示:注意,还可以添加一些其他特征来描述点云,如RGB颜色、法线等。例如,可以添加R…- 4
- 0
-
利用 Python 实现点云的地面检测
1. 计算机视觉坐标系统在开始之前,了解计算机视觉中的传统坐标系是很重要的。其次是Open3D和Microsoft Kinect传感器。在计算机视觉中,图像用独立的2D坐标系表示,其中x轴从左向右指向,y轴是上下指向。对于相机,3D坐标系原点位于相机的焦点处,x轴指向右,y轴指向下,z轴指向前。计算机视觉坐标系我们首先导入所需的Python库:import numpy as npimport op…- 3
- 0
-
更新版 Point Transformer:更高效、更快速、更强大!
原标题:point transformer v3: simpler, faster, stronger论文链接:https://arxiv.org/pdf/2312.10035.pdf代码链接:https://github.com/Pointcept/PointTransformerV3作者单位:HKU SH AI Lab MPI PKU MIT论文思路:本文无意在注意力机制内寻求创新。相反,它侧…- 4
- 0
-
CVPR’24 Oral | 一览纯稀疏点云检测器SAFDNet的前世今生!
写在前面&笔者的个人理解3D点云物体检测对自动驾驶感知至关重要,如何高效地从稀疏点云数据中学习特征表示是3D点云物体检测领域的一个关键挑战。我们在本文中将会介绍团队发表在NeurIPS 2023的HEDNet和CVPR 2024的SAFDNet,其中HEDNet聚焦于解决现有稀疏卷积神经网络难以捕捉远距离特征间依赖关系的问题,而SAFDNet则是基于HEDNet构建的纯稀疏点云检测器。在点…- 3
- 0